370. Viscosity and Molecular Association. Part IV.*

 Association of Monohydric Alcohols and Some Hindered Phenols.
By Leo H. Thomas and R. Meatyard.

The physical properties of a number of alcohols and phenols have been determined, and degrees of association of 36 lower monohydric alcohols and two hindered phenols have been evaluated. A correlation of extent of association with molecular structure is also presented.

By use of the nomenclature and methods of evaluation outlined in Part III, the values of the various constants expressing the viscosity and vapour-pressure behaviour of a number of alcohols not studied in earlier papers are given in Table 1. The values are

Fig. la. (1) 2-Methylbutan-1-ol. (2) Pentan-2-ol. (3) Butan-2-ol. (4) 3-Methyl-butan-2-ol. (5) 2-Methylbutan-2-ol. (6) 2,3-Dimethylbutan-2-ol. (7) 2 -Methyl-propan-2-ol.
based on our measurements of viscosity, density, and vapour pressure, with the exception of the densities of heptan-1-ol and octan-1-ol, which are from the literature.

Degrees of association (γ) for the other alcohols have been given in Parts I and II (values previously reported for heptan-1-ol and octan-1-ol were, however, unreliable because of paucity of data). Refinements in procedure have necessitated re-evaluation in order that valid correlation of structure and extent of association may be attempted; the appropriate values of A, D, and d remain unaltered.

Data corresponding to a vapour pressure of 100 mm . mercury are printed in Table 2, and degrees of association (when not constant) for the appropriate experimental ranges $(\sim 5-760 \mathrm{~mm}$.) are shown in the Figures. The hydrogen-bond enthalpies in the 8 th column

[^0]are those calculated as previously on the basis of "chain" polymers; those in the 9th column have been evaluated on the basis of " ring" polymers, as outlined in Part V (following paper). Those alcohols having values of γ independent of temperature at least over the experimental range, and therefore assumed to have attained their "ultimate"

Fig. 1b. (1) 2,6-Di-t-butylphenol. (2) 5-Methyl-2-t-butylphenol. (3) Phenol. (4) o-Cresol. (5) Heptan-2-ol. (6) 4 -Methylpentan-1-ol. (7) 3 -Methylpentan-1-ol. (8) Hexan-2-ol. (9) 2 -Methylpentan-1-ol. (10) 3-Methylpentan-2-ol. 11) 4-Methylpentan-2-ol. (12) 2,2-Dimethylbutan-1-ol. (13) Hexan-3-ol.

Fig. lc. (1) Heptan-3-ol. (2) Heptan-4-ol. (3) 2 -Methylpentan- 2 -ol. (4) 2 -Methyl-hexan-2-ol. (5) 2-Ethylbutan-1-ol. (6) 2 -Methylpentan- 3 -ol. (7) 2,4-Dimethyl-pentan-3-ol. (8) Pentan-3-ol.
degrees of association (Part II), are indicated in the Table by an asterisk. For such compounds, the plots of $\log T$ against $\log T_{\text {benzene }}$, both temperatures corresponding to the same vapour pressure, are expected to be linear (Part III). The tabulated B values are then those derived by solution of eqn. 13 of Part III, and the mean deviations between the experimental temperatures for the range $10-760 \mathrm{~mm}$. and those calculated from this

Table 1.

No.	Alcohol	A	$\begin{gathered} D \\ \text { (or } \begin{array}{c} 10 b \text {) } \end{array}, ~ \end{gathered}$	$\begin{gathered} d \\ \text { (or } a \text {) } \end{gathered}$	$\begin{gathered} \text { \% } \\ \text { devn. } \end{gathered}$	Temp. range $\left({ }^{\circ} \mathrm{C}\right)$
I	Butan-2-ol	10.00	188	0.640	$0 \cdot 6$	25-96
II	Pentan-1-ol	-	$55 \cdot 03$	$0 \cdot 3820$	$0 \cdot 5$	41-130
III	Pentan-2-ol	10.00	$95 \cdot 5$	0.600	$0 \cdot 6$	25-113
IV	Pentan-3-ol	13.00	195	0.780	$0 \cdot 9$	30-109
V	2-Methylbutan-1-ol	$4 \cdot 00$	$85 \cdot 1$	0.480	0.7	29-123
VI	3-Methylbutan-2-ol	12.00	162	0.660	0.7	18-107
XII	Heptan-1-ol	-	38.26	0.353	$0 \cdot 6$	109-168
VII	Heptan-2-ol	$7 \cdot 00$	$36 \cdot 6$	$0 \cdot 460$	$0 \cdot 1$	$60-150$
VIII	Heptan-3-ol	$6 \cdot 00$	39.5	$0 \cdot 470$	$0 \cdot 6$	54-145
IX	Heptan-4-ol	$8 \cdot 00$	$36 \cdot 7$	0.510	$0 \cdot 1$	64-146
X	2-Methylhexan-2-ol	10.00	$56 \cdot 6$	0.570	0.8	45-134
XI	2,4-Dimethylpentan-3-ol	12.00	103	0.780	$0 \cdot 8$	48--133
XIII	Octan-1-ol		32.53	$0 \cdot 337$	$0 \cdot 3$	121-187
XIV	5-Methyl-2-t-butylphenol	12.00	$12 \cdot 0$	0.520	$0 \cdot 4$	90-190
XV	2,6-Di-t-butylphenol	12.00	8.2	$0 \cdot 390$	$0 \cdot 3$	91-190

η was measured in millipoises and p in mm.

Table 2.

Alcohol	n	F	B^{\prime}	B_{100}	a_{100}	γ_{100}	$h / 100$ chain poly- mers	(cal.) ring poly- mers	γ ult.	\dagger	$\pm{ }_{+}{ }_{\mathrm{o}} \sqrt{ } \nu_{\mathrm{c}}$
Methanol	0	$70 \cdot 0$	$1 \cdot 058$	0.861	* 0.264	1.47	54	27	$1 \cdot 5$	$0 \cdot 3$	1.22
Ethanol	0	$100 \cdot 0$	1.046	0.813	* 0.321	1.88	49	24	$1 \cdot 9$	$0 \cdot 3$	1.41
Propan-1-ol	1	128.4	1.028	0.790	* 0.381	$2 \cdot 25$	47	26	$2 \cdot 3$	$0 \cdot 3$	$1 \cdot 25$
Propan-2-ol	0	$130 \cdot 0$	1.040	0.794	* 0.482	$2 \cdot 87$	39	26	$2 \cdot 9$	$0 \cdot 2$	0.86
Butan-1-ol	2	$156 \cdot 1$	1.011	0.789	* 0.375	$2 \cdot 19$	48	26	$2 \cdot 2$	$0 \cdot 1$	$1 \cdot 15$
2-Methylpropan-1-ol	1	158.0	1.023	0.778	* 0.476	$2 \cdot 85$	43	28	$2 \cdot 8$	$0 \cdot 1$	0.97
Butan-2-ol	1			$0 \cdot 784$	0.527	$3 \cdot 13$	39	29	$3 \cdot 9$		$1 \cdot 22$
2-Methylpropan-2-ol	0	$160 \cdot 0$	1.036	0.774	$0 \cdot 719$	$4 \cdot 37$	36	29	$5 \cdot 1$		$1 \cdot 36$
Penta-1-ol..	3	183.0	0.996	0.798	* 0.382	$2 \cdot 16$	45	25	$2 \cdot 2$	$0 \cdot 3$	1.05
3-Methylbutan-1-ol	2	$185 \cdot 3$	$1 \cdot 008$	0.786	* 0.405	$2 \cdot 36$	47	27	$2 \cdot 4$	$0 \cdot 1$	1.00
2-Methylbutan-1-ol	,	,,	,,	0.783	$0 \cdot 444$	$2 \cdot 60$	44	28	$2 \cdot 8$		1.00
Pentan-2-ol	,	, ,	,,	0.785	0.457	$2 \cdot 67$	42	30	$3 \cdot 6$		1.21
Pentan-3-ol	1	"		0.795	$0 \cdot 519$	$3 \cdot 00$	37	29	$4 \cdot 7$		$1 \cdot 39$
3-Methylbutan-2-ol	1	187.7	1.021	0.792	$0 \cdot 500$	2.93	39	29	$4 \cdot 0$		1.40
2-Methylbutan-2-ol	$\frac{1}{2}$	188.8	1.028	0.787	$0 \cdot 568$	3•37	38	29	$4 \cdot 4$		$1 \cdot 38$
Hexan-1-ol	4	$209 \cdot 4$	0.982	0.807	* 0.377	$2 \cdot 08$	43	23	$2 \cdot 1$	$0 \cdot 1$	1.02
4-Methylpentan-1-ol	3	212.0	0.994	0.797	$0 \cdot 378$	$2 \cdot 14$	47	28	$2 \cdot 5$		$1 \cdot 21$
3-Methylpentan-1-ol	, ,	,,	, ,	0.808	$0 \cdot 389$	$2 \cdot 17$	43	27	$2 \cdot 6$		$1 \cdot 19$
2-Methylpentan-1-ol	,		,	$0 \cdot 817$	$0 \cdot 417$	$2 \cdot 31$	39	27	$3 \cdot 2$		$1 \cdot 27$
2-Ethylbutan-1-ol	2	$214 \cdot 5$	$1 \cdot 006$	$0 \cdot 820$	$0 \cdot 451$	$2 \cdot 52$	37	27	$3 \cdot 5$		$1 \cdot 22$
2,2-Dimethylbutan-1-ol ...	$1 \frac{1}{2}$	$215 \cdot 9$	$1 \cdot 013$	0.820	$0 \cdot 514$	$2 \cdot 89$	34	26	$3 \cdot 9$		1.43
Hexan-2-ol	3	212.0	0.994	0.786	$0 \cdot 393$	$2 \cdot 26$	47	32	$3 \cdot 2$		$1 \cdot 31$
Hexan-3-ol				0.832	$0 \cdot 479$	$2 \cdot 60$	31	23	$4 \cdot 1$		$1 \cdot 22$
3-Methylpentan-2-ol	2	214.5	$1 \cdot 006$	0.800	0.437	$2 \cdot 50$	41	29	$3 \cdot 5$		$1 \cdot 23$
4-Methylpentan-2-ol	,	,"	, ,	$0 \cdot 840$	$0 \cdot 474$	$2 \cdot 58$	31	23	$3 \cdot 8$		$1 \cdot 26$
2-Methylpentan-3-ol				0.816	$0 \cdot 463$	$2 \cdot 60$	36	26	$3 \cdot 8$		$1 \cdot 17$
2-Methylpentan-2-ol	$1 \frac{1}{2}$	$215 \cdot 9$	1.013	0.836	$0 \cdot 406$	$2 \cdot 24$	35	24	$3 \cdot 2$		$1 \cdot 24$
3-Methylpentan-3-ol			, $\quad \propto$	0.80	0.54	$3 \cdot 1$	-	$\propto 27$	~ 5		\square
2,3-Dimethylbutan-2-ol ...	${ }^{\frac{1}{2}}$	$218 \cdot 7$	1.026	0.836	$0 \cdot 540$	$3 \cdot 01$	31	24	$4 \cdot 8$		$1 \cdot 62$
Heptan-1-ol .	5	$235 \cdot 2$	0.970	0.804	* 0.353	1.94	47	23	$1 \cdot 9$	$0 \cdot 3$	1.04
Heptan-2-ol	4	$238 \cdot 0$	0.981	$0 \cdot 840$	$0 \cdot 373$	1.98	35	21	$2 \cdot 5$		1.07
Heptan-3-ol	,	,,	,,	$0 \cdot 815$	$0 \cdot 389$	$2 \cdot 13$	40	23	$2 \cdot 6$		0.96
Heptan-4-ol	,		"'	0.835	$0 \cdot 379$	$2 \cdot 02$	36	23	$2 \cdot 8$		1.05
2-Methylhexan-2-ol	$3 \frac{1}{2}$	$239 \cdot 5$	0.987	$0 \cdot 820$	$0 \cdot 405$	$2 \cdot 22$	37	26	$3 \cdot 3$		$1 \cdot 27$
2,4-Dimethylpentan-3-ol	2	$243 \cdot 8$	$1 \cdot 005$	$0 \cdot 850$	$0 \cdot 441$	2.37	30	23	$4 \cdot 4$		$1 \cdot 30$
Octan-1-ol....................	6	$260 \cdot 4$	0.957	0.808	* 0.337	1.81	48	24	$1 \cdot 8$	$0 \cdot 2$	$1 \cdot 06$
5-Methyl-2-t-butylphenol	$2 \frac{1}{2}$	321.5	0.972	0.897	$0 \cdot 281$	1.38	37	24	$2 \cdot 8$		-
2,6-Di-t-butylphenol	2	$411 \cdot 3$	0.981	0.911	$0 \cdot 261$	1.28	44	23	$2 \cdot 1$		-

[^1] is calculated on the assumption that $h=2700 \mathrm{cal}$.
\ddagger For pentanol and higher alcohols, critical pressures have been calculated by Hertzog's method (Ind. Eng. Chem., 1944, 36, 997).
equation are shown in column 11. In no case is there significant departure from linearity, and the deviations probably lie within the limits of experimental error. For the remaining alcohols, B increases somewhat with rising temperature as expected, and values of B corresponding to a vapour pressure of 100 mm . have been calculated by numerical differentiation from the plot of $\log T$ against $\log T_{\text {benzene }}$.

In their behaviour in the experimental regions studied, the alcohols fall into three groups: (a) Those having constant degrees of association, and showing a linear plot of $\log \eta \sqrt{ } v$ against $\log p$ which on extrapolation to critical conditions give values of $\log n_{\mathrm{e}} \sqrt{ } v_{\mathrm{c}}$ in reasonable agreement with the value for non-associated substances. ${ }^{1}$ This applies to the straight-chain alcohols from methanol to butanol, the average value of $\eta_{c} \sqrt{ } v_{c}$ being 1.26 (η in millipoises) compared with a mean value for non-associated substances of 1.26 . Such behaviour implies that the association complexes are unusually stable and the alcohols therefore exhibit their ultimate degrees of association even at quite high temperatures. (b) Those showing variation in γ, but which still lead to normal $\eta_{\mathrm{c}} \sqrt{ } v_{c}$ values, e.g., the mean $\eta_{c} \sqrt{ } v_{c}$ value for $5 \mathrm{C}_{5}$ alcohols and $13 \mathrm{C}_{6}$ alcohols is $\mathrm{I} \cdot 29$. Variation in γ in the experimental range is of course allowed for by the nature of the η / p equation used (i.e., eqn. 3, Part III). Such alcohols attain their ultimate degrees of association only at temperatures below those studied experimentally. (c) The lower branched-chain alcohols, isopropyl, isobutyl, and isopentyl, and also the higher straight-chain alcohols have linear plots of $\log \eta \sqrt{ } v$ against $\log p$, but lead to values of $\eta_{c} \sqrt{ } v_{c}$ significantly lower than $1 \cdot 26$. These alcohols have apparently attained their ultimate degrees of association under the experimental conditions but are partly dissociated at higher temperatures.

The Figures show values of γ over the experimental ranges, and also values extrapolated to lower vapour pressure (1 mm .), and, for a few cases, to higher vapour pressure. To a close approximation, γ differs from a only by an approximately constant factor so that the general form of the plot of a against $\log p$ (see Part II) is similar to that of γ against log p shown in Fig. 1.

By successive differentiation of eqn. 3 of Part III, and equation to zero it can be shown that $\mathrm{d} a / \mathrm{d} \log p$ is a maximum $\left[(d-0 \cdot 220)^{2} / 4\right]$ when $\log p=[1 /(d-0 \cdot 220)] \log (D / A)$, or when $a=(d+0 \cdot 220) / 2$. But since $\mathrm{d} \gamma / \mathrm{d} a$ is very nearly constant (see eqn. 4 of Part III; E / E^{\prime} being almost independent of $\left.\log p\right), \mathrm{d} \gamma / \mathrm{d} \log p$ is also a maximum under these conditions. Inspection of the values of d, D, and A shows that as $1 /(d-0 \cdot 220)$ decreases, D / A increases, so that in fact the points of inflexion in the plots of γ against $\log p$ all occur just above or within the experimental range. Below $\sim 10 \mathrm{~mm}$. therefore, Fig. 1 shows a family of divergent curves which, within the limits of our method, do not intersect. The order of increasing association for a given series of alcohols at say 10 mm . is then identical with that given by the ultimate degrees of association. Alternatively, comparison of ultimate degrees of association is equivalent to a comparison of γ at points of maximum $\mathrm{d} \gamma / \mathrm{d} \log p$.

The circumstance that measurements have not yet been made at very low vapour pressure does not therefore invalidate the correlation of molecular structure and (ultimate) degrees of association attempted.

Correlation of Degrees of Association of Alcohols and Molecular Structure.-II seems to be generally assumed that a steric factor inhibiting association operates even for the simpler alcohols such that straight-chain alcohols would be expected to be more associated than secondary alcohols, which in turn would be more associated than tertiary alcohols. Thus it has been argued by Klyne ${ }^{2}$ that the decrease in boiling point which occurs with increasing branching in a series of isomeric aliphatic alcohols is due in the main to a decrease in association. We find this argument unconvincing since the lowering which occurs in the boiling point of the corresponding thiols is practically identical in magnitude.

[^2]Again, the difference in boiling point between, say, n-pentane and neopentane (48°) is greater than that between those of n-butyl alcohol and t-butyl alcohol (34) ; indeed these figures could equally well lead to the argument that t-butyl alcohol is more associated than n-butyl alcohol. It appears to us that the high boiling point of an associated compound is due fundamentally to the high electrostatic interaction between the hydroxyl groups and that, whereas this does lead to strong association, there need not be any simple relation between boiling point and extent of association.

Our results show that in the simpler alcohols studied, a steric inhibiting factor is absent; indeed, instead of an inverse correlation between extent of branching and degree of association, we have found that branching leads to an increase in association.

Thus from the tabulated values of γ_{ult}, we conclude that:
(a) The lowest association occurs in methanol with the most open environment for the hydroxyl group.
(b) An increase in association occurs from methanol to ethanol (α-substitution), and a further but lesser increase from ethanol to propan-1-ol (β-substitution). A small decrease then occurs with further increase in chain length.
(c) Progressive α-substitution by methyl (or ethyl) groups into methanol causes progressive increases in γ up to 1,1-dimethylethanol and 1-ethyl-1-methylpropan-1-ol; association is then at a maximum. Study of such highly-branched compounds as say $\mathrm{Bu}_{3}^{\mathrm{t}} \mathrm{C} \cdot \mathrm{OH}$ would be of great interest; it might well be that a steric, inhibiting, factor would then be revealed-in other words, the limit of association may have been reached with the lower tri-n-alkylmethanols.
(d) Similar α-substitution into butan-1-ol and higher n-alcohols also causes increases in γ but the effect is not as marked as in the series referred to in para. (c). In other words, a decrease in association occurs with increase in chain length if the immediate neighbourhood of the hydroxyl group is unchanged.
(e) The effect of β-substitution into n-alcohols is similar but less marked.
(f) Substitution in γ - and δ-positions also causes a definite though smaller increase in association. Since such substitution cannot appreciably affect the environment of the hydroxyl group, the effect is probably connected with departure of the chain from linearity. This is examined further in the following paper.
(g) Once substitution has occurred in the α-position, subsequent substitution further along the chain does not significantly affect γ.

These observations lead to the general conclusion that association is least for straightchain alcohols on account of the linear nature of the molecules. Conversely, association is greatest with the nearest approach to spherical shape in the immediate neighbourhood of the hydroxyl group, i.e., when the substance has its centre of symmetry falling as near as possible to the hydrogen bond.

The Occurrence of a Steric Factor in the Association of Phenols.- On the basis of the magnitude of the shift in the $\mathrm{O}-\mathrm{H}$ stretching frequency in the infrared absorption spectra to higher wavelength as the result of the involvement of the hydrogen atom in a hydrogen bond, Coggeshall, ${ }^{3}$ Sears and Kitchen, ${ }^{4}$ and Puttnam, ${ }^{5}$ examined a number of alkylphenols. When the difference in wavelength $(\Delta \lambda)$ between a dilute solution and a concentrated solution or liquid melt is considered, the phenols can be divided into (sterically) unhindered phenols substituted meta or para only, and " hindered" phenols substituted in both ortho-positions by large groups such as t-butyl. The effect of such substituents as orthoisobutyl is intermediate, as also is the effect of only one t-butyl group. According to Sears and Kitchen, even ortho-methyl groups have a certain effect, although this was not the view of Coggeshall.

The previous results on phenols (Part III), supplemented by the present work on

[^3]3 -methyl-6-t-butyl- and 2,6-di-t-butyl-phenol, would appear to support these findings. Thus, whereas the cresols (see Fig. 1b) and phenol itself are associated to approximately the same extent, 3 -methyl-6-t-butylphenol (partially hindered) is associated only to the extent of $\sim \mathbf{2 0} \%$ at its boiling point. The degree of association of the fully-hindered 2,6 -di-tbutylphenol is still further depressed (Fig. lb).

However, the decrease in association is probably not entirely due to the proximity of the t-butyl groups, for a similar but less-marked decrease seems to result in general from substitution, even in meta- and para-positions, by groups other than methyl irrespective cf the electronic nature of the group (p-chlorophenol, m - and p-methoxyphenols, and methyl p-hydroxybenzoate; cf. Part III). Again for alkylphenols, reduced acidity could be a contributory factor.

The operation of a steric factor in phenols is to be expected since the oxygen atom of the hydroxyl group and the α-carbon atom of the substituent are necessarily coplanar. A steric inhibiting factor functioning in alcohols by simply shielding the hydroxyl group is absent in the compounds studied, although it might well arise in a compound such as, say, $\mathrm{Bu}_{3}^{\mathrm{t}} \mathrm{C} \cdot \mathrm{OH}$.

In contrast to the behaviour of phenols, there do not appear to be any significant differences in the values of $\Delta \lambda$ between a straight-chain alcohol and its branched-chain isomer. 6,7

Experimental

Vapour pressures were measured as outlined in Part III, and smoothed values, read from a a large-scale graph of $\log p$ against t, are recorded in Table 3. We have compared the results for 5 alcohols with those of Butler, Ramchandani, and Thomson ${ }^{8}$ by evaluating temperatures corresponding to their published vapour pressures. Agreement is satisfactory, our results for a given alcohol being either consistently a fraction of a degree lower or higher than their temperatures.

Table 3.
Temperatures $\left({ }^{\circ} \mathrm{C}\right)$ corresponding to values of $\log _{10} p$, where p is the
vapour pressure (mm.).

$\log _{10} \rho$		$0 \cdot 8$	$1 \cdot 0$	1.2	1.4	1.6	1.8	$2 \cdot 0$	$2 \cdot 2$	$2 \cdot 4$	$2 \cdot 6$	$2 \cdot 8$	$2 \cdot 880$	$\begin{gathered} 2 \cdot 8808(1) \\ \text { values } \end{gathered}$	
Compd.	. I		16.9	23.4	30.3	$37 \cdot 6$	$45 \cdot 4$	$53 \cdot 8$	$62 \cdot 9$	72.5	82.9	$94 \cdot 2$	99.2	$99.5{ }^{1}$	
,,		$37 \cdot 3$	$44 \cdot 6$	$52 \cdot 1$	$59 \cdot 8$	67.9	$76 \cdot 4$	$85 \cdot 5$	95.7	$106 \cdot 6$	$118 \cdot 6$	131.8	137.9	$137.9{ }^{1}$to 138.2	
"	III	$24 \cdot 8$	31.7	38.8	$46 \cdot 1$	53.6	61.7	$70 \cdot 4$	79.8	90.0	101.0	113.3	119.2	$119.8{ }^{1}$	119.5^{5}
",	IV	$20 \cdot 6$	$27 \cdot 6$	34-8	$42 \cdot 2$	$49 \cdot 8$	57.9	$66 \cdot 6$	$76 \cdot 1$	86.2	$97 \cdot 3$	109.7	115.5	$116.0{ }^{1}$	$115 \cdot{ }^{3}$
,',	V	$33 \cdot 6$	$39 \cdot 7$	$46 \cdot 4$	53.5	$61 \cdot 3$	$69 \cdot 8$	$78 \cdot 6$	88.2	98.6	$110 \cdot 1$	$122 \cdot 6$	128.2	$128{ }^{1}$	128.0^{2}
,',	VI		$25 \cdot 3$	$32 \cdot 0$	$39 \cdot 1$	$46 \cdot 7$	$54 \cdot 8$	63.5	72.7	$82 \cdot 8$	93.8	$106 \cdot 1$	111.4	111.5^{2}	
,,	VII	49.7	57-1	64-8	73.0	81.8	91.1	$101 \cdot 1$	111.9	$124 \cdot 1$	$137 \cdot 3$	151.8	158.2	158.5^{2}	$158{ }^{5}$
,",	VIII	$52 \cdot 0$	$59 \cdot 5$	$65 \cdot 5$	73.2	81.5	$90 \cdot 6$	$100 \cdot 3$	111.0	123.0	$136 \cdot 3$	$150 \cdot 5$	$156 \cdot 6$		
"	IX	$47 \cdot 4$	$54 \cdot 9$	62.7	$70 \cdot 8$	$79 \cdot 3$	88.5	$98 \cdot 2$	$108 \cdot 8$	$120 \cdot 5$	$133 \cdot 4$	148.0	$154 \cdot 2$	155.4^{3}	
,,	X	38.4	$46 \cdot 1$	$54 \cdot 0$	$62 \cdot 0$	$70 \cdot 2$	$78 \cdot 8$	88.1	98.4	$109 \cdot 8$	$122 \cdot 6$	136.7	142.8	$142 \cdot{ }^{5}$	
,'	XI	$34 \cdot 3$	41-1	48.2	$55 \cdot 8$	$64 \cdot 1$	$73 \cdot 3$	$83 \cdot 1$	93.5	$105 \cdot 0$	$118 \cdot 1$	$132 \cdot 6$	$139 \cdot 0$	$140{ }^{5}$	
,',	XII	68.2	$75 \cdot 2$	$82 \cdot 9$	91.2	$99 \cdot 8$	$109 \cdot 2$	119.5	$130 \cdot 8$	$143 \cdot 0$	$156 \cdot 2$	$170 \cdot 5$	$176 \cdot 6$	175.8 ${ }^{\text {S }}$	$176 \cdot 3^{4}$
,,	XIII	$82 \cdot 0$	$89 \cdot 0$	96.7	$105 \cdot 2$	114.5	$124 \cdot 7$	135.5	$147 \cdot 1$	$159 \cdot 7$	173.3	188.2	194.7	$195.2{ }^{1}$	$194 \cdot{ }^{\text {d }}$
,,	XIV 1	$105 \cdot 0$	$114 \cdot 3$	24-2	$134 \cdot 6$	$145 \cdot 8$	$158 \cdot 0$	$171 \cdot 0$	$185 \cdot 1$	$200 \cdot 2$	$216 \cdot 5$	---	-		
,,	XV 1	113.6	$123 \cdot 0$	$33 \cdot 21$	$144 \cdot 2$	$156 \cdot 0$	$168 \cdot 6$	$182 \cdot 2$	196.8	212.6	-	-	-		

Refs. 1, Timmermans (ref. 13). 2, "Organic Solvents" (ref. 14). 3, " Handbook of Chemistry and Physics," Chemical Rubber Publishing Co., 1957. 4, Rodd, "Chemistry of Carbon Compounds," Elsevier Publishing Co., 1951, Vol. 1A. 5, International Critical Tables.

Viscosities were determined with an Ostwald-type U-tube viscometer (Brit. Stand. 188), the usual precautions being observed. Temperatures were measured with a series of totally immersed short-stem thermometers, calibrated and graduated in $0 \cdot 1^{\circ} \mathrm{C}$.

[^4]Even at the highest temperatures, temperature fluctations at different points in the thermostat-bath fluid did not exceed $0 \cdot 1^{\circ} \mathrm{C}$.

The viscometer, after being annealed at 300° for several days, was calibrated against water by using viscosities calculated from Bingham's ${ }^{9}$ fluidity-temperature equation at eight temperatures between 12° and 95°, and the constants in the equation $v=C t-c / t$ (where v is the kinematic viscosity in centistokes and time in sec.), evaluated by application of Campbell's " zero sum " method, ${ }^{10}$ to give $C=0.00360$ and $c=2.32$. The mean deviation between Bingham's best values and those calculated by us was 0.2%, with a maximum deviation of 0.4%. The minimum time of flow during the measurements never fell below the quickest time involved in the calibration. Similar recalibration after repeated use of the instrument gave values of the constants virtually identical with the above. Densities were measured by using $5-10$ c.c. pyknometers as described by Reilly and Rae ${ }^{11}$ and refer to water at $4^{\circ} \mathrm{C}$.

Refractive indices were measured on an Abbé refractometer generally from $\sim 10^{\circ}$ to $\sim 25^{\circ}$; plots of refractive index against temperature were linear within the limits of error.

Materials.--All materials were fractionated in a $12 \mathrm{in} . \times 1 \mathrm{in}$. diam. column packed with Dixon $1 / 16$ in. $\times 1 / 6$ in. gauze rings, and provided with an electrically-heated jacket regulated to maintain temperature $\sim 25^{\circ}$ below the distillation values. The efficiency on total reflux was ~ 12 theoretical plates. The recommendations of Linstead, Elvidge, and Whalley ${ }^{12}$ (including intermittent take-off) were followed in distillations, their progress being followed both thermometrically and by means of refractive-index measurements. Any variations in column-head temperatures and refractive index during final fractionation are recorded below. Unless otherwise stated, our b. p.s (by extrapolaton or interpolation) agree satisfactorily with the best literature value (see Table 3). Before distillation, all the alcohols were dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$ followed by " Drierite").

Butan-2-ol (I). The fraction used (ex B.D.H. material) had $n_{\mathrm{D}}{ }^{15} 1 \cdot 3994$ (lit. ${ }^{13} 1 \cdot 3995$), $\mathrm{d} n / \mathrm{d} \theta 0.00041, d_{30}$ (interpolated) 0.7987 (lit. ${ }^{13} 0.7990$). There was also satisfactory agreement (mean deviation, 0.6 mm .) with the vapour pressures recorded by Timmermans ${ }^{13}$ from 12.7 mm . to 79.5 mm .; agreement over the viscosities at 15° and 30° is however poor-our value at 15° being 10% higher, and at $30^{\circ} 19 \%$ lower, than those recorded by Timmermans. In view of the good agreement found for viscosity values for other alcohols, this disagreement is difficult to explain.

Temp. (θ), ${ }^{\circ} \mathrm{C}$	$29 \cdot 6$	$45 \cdot 1$	$59 \cdot 2$	$74 \cdot 6$	$89 \cdot 0$				
$d_{4}{ }^{\theta}$	$0 \cdot 7988$	0.7857	$0 \cdot 7721$	$0 \cdot 7567$	0.7409				
θ°	$14 \cdot 8$	25.3	$33 \cdot 8$	$45 \cdot 8$	$53 \cdot 9$	66.3	$75 \cdot 4$	$83 \cdot 9$	95.5
η (in poises $\times 10^{3}$)	$46 \cdot 60$	$30 \cdot 81$	22.61	$15 \cdot 24$	11.90	8.50	6.92	$5 \cdot 68$	$4 \cdot 60$

Pentan-1-ol (II). Although our sample (500 g ., ex B.D.H. material) had constant b. p. and refractive index, it was impure by comparison of its physical properties with those recorded by Timmermans ${ }^{13}$ (in parentheses), viz. $d_{4}^{30} 0.8117(0.8076), n_{\mathrm{D}}{ }^{15} 1.4138(1.4117), \eta_{30}$ $29.5(29 \cdot 87), \mathrm{d} n / \mathrm{d} \theta 0.00036$.

θ°	29.7	$45 \cdot 1$	$59 \cdot 2$	$74 \cdot 6$	$89 \cdot 0$	103.7	123.4		
$d_{4}{ }^{\theta}$	$0 \cdot 8116$	$0 \cdot 8001$	$0 \cdot 7893$	$0 \cdot 7765$	$0 \cdot 7641$	0.7514	0.7319		
θ°	$24 \cdot 9$	$41 \cdot 3$	53.8	$70 \cdot 1$	$83 \cdot 1$	99.8	114.2	$120 \cdot 7$	129.8
η	34-41	$22 \cdot 10$	16.25	11.40	$8 \cdot 77$	$6 \cdot 46$	$5 \cdot 13$	$4 \cdot 64$	$4 \cdot 08$

Pentan-2-ol (III). This alcohol was prepared by the Grignard reaction from propyl bromide and acetaldehyde. To remove paraldehyde which forms an azeotrope with the alcohol, ${ }^{13}$ the product was distilled with dilute sulphuric acid (100 c.c.), and acetaldehyde, formed by depolymerisation, was removed by distillation. The residue, which no longer gave a precipitate with Fehling's solution, was washed with aqueous sodium hydrogen carbonate, and then water, and finally dried. Several fractionations then gave material, b. p. over a 0.3° range, $n_{\mathrm{D}}{ }^{20}$
${ }^{9}$ Bingham, " Fluidity and Plasticity," McGraw-Hill Book Co. Inc., 1922.
${ }^{10}$ Campbell, Phil. Mag., 1920, 39, 177; 1924, 47, 816.
${ }^{11}$ Reilly and Rae, " Physico-Chemical Methods," Methuen and Co. Ltd., London, 1940, Vol. 1.
${ }^{12}$ Linstead, Elvidge, and Whalley, "A Course in Modern Techniques of Organic Chemistry," Butterworths Scientific Publications, London, 1955, Ch. 8.
${ }^{13}$ Timmermans, " Physico-Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.
$1 \cdot 4063 \longrightarrow 1.4065$ (25 c.c. from 99 c.c. of original alcohol). Its physical properties, apart from a slight discrepancy in b. p. $\left(0 \cdot 6^{\circ}\right)$, agreed closely with those recorded by Timmermans, viz. d_{4}^{30} $0.8017(0.8012), n_{v}{ }^{15} 1.4083(1.4084), \mathrm{d} n / \mathrm{d} \theta=0.00038, \eta_{30} 27.9(27.8)$.

0°.	$20 \cdot 1$	$30 \cdot 1$	41.3	$50 \cdot 8$	$74 \cdot 6$	93.5	108.2	
$d_{4}{ }^{\theta}$	$0 \cdot 8069$	$0 \cdot 8015$	0.7923	0.7836	0.7617	0.7428	$0 \cdot 7274$	
θ°	$25 \cdot 4$	$33 \cdot 6$	$50 \cdot 0$	$60 \cdot 1$	74.5	88.8	99.5	113.3
η	$33 \cdot 90$	$24 \cdot 86$	14.52	$10 \cdot 93$	$7 \cdot 72$	$5 \cdot 70$	$4 \cdot 69$	3.742

Pentan-3-ol (IV). This alcohol was prepared by the Grignard reaction from ethyl bromide and propionaldehyde; 2 fractions were obtained, (a) b. p. 108-114 ${ }^{\circ}$, and (b) b. p. $114-114.5^{\circ}$. Fraction (a) was treated with dilute sulphuric acid (see above), dried, and refractionated. Material, b. p. $>114^{\circ}$, was combined with fraction (b) and then refractionated; the final sample boiled over a 0.4° range and had $n_{\mathrm{D}}{ }^{20} 1.4102 \longrightarrow 1.4104$. Its physical properties, apart from a slight discrepancy in b. p. $\left(0.5^{\circ}\right)$ were virtually identical with those recorded by Timmermans, viz., $d_{4}^{30} 0.8117(0.8118), n_{\mathrm{D}}{ }^{15} 1.4123(1.4124), \mathrm{d} n / \mathrm{d} \theta 0.00041, \eta_{30} 32.8(33.1)$.

θ°	$19 \cdot 4$	29.9	$41 \cdot 3$	$50 \cdot 8$	$74 \cdot 6$	93.5	108.2		
$d_{4}{ }^{\text {a }}$	$0 \cdot 8208$	$0 \cdot 8119$	$0 \cdot 8015$	0.7928	$0 \cdot 7698$	$0 \cdot 7501$	$0 \cdot 7336$		
θ°	$20 \cdot 1$	$29 \cdot 8$	$36 \cdot 9$	$47 \cdot 2$	$55 \cdot 1$	$71 \cdot 1$	79.5	$88 \cdot 4$	$109 \cdot 0$
η.	53.42	$32 \cdot 97$	$24 \cdot 28$	$16 \cdot 24$	$12 \cdot 42$	$7 \cdot 99$	6.53	$5 \cdot 42$	3.75

2-Methylbutan-1-ol (V). The final sample (ex B.D.H. " active amyl alcohol-a racemic mixture '") boiled over a 0.5° range and had $n_{\mathrm{D}}{ }^{15} 1.4119, \mathrm{~d} n / \mathrm{d} \theta 0.00039, d_{4}^{20}$ (extrapolated) 0.819 , d_{4}^{25} (extrapolated) 0.815 (lit. ${ }^{14} 0.8193$ and 0.8152 , respectively).

θ°	29.5	$51 \cdot 2$	$64 \cdot 8$	79.9	$94 \cdot 8$	$105 \cdot 0$	117.5				
$d_{4} \theta \ldots$	$0 \cdot 8111$	$0 \cdot 7928$	0.7814	$0 \cdot 7687$	0.7549	$0 \cdot 7451$	0.7343				
θ°...		28.9	$45 \cdot 7$	$52 \cdot 0$	$61 \cdot 1$	70.5	$80 \cdot 2$	$89 \cdot 6$	$99 \cdot 9$	108.6	123.0
η	$55 \cdot 05$	$38 \cdot 68$	22.49	18.53	14.54	11.49	9-14	$7 \cdot 45$	$6 \cdot 12$	$5 \cdot 23$	$4 \cdot 14$

3-Methylbutan-2-ol (VI). Prepared from isopropyl bromide and acetone by a Grignard reaction. The alcohol had b. p. range $0.3^{\circ}, n_{D_{0}}{ }^{20} 1.4093$ (lit. ${ }^{14} 1.4095$), $\mathrm{d} n / \mathrm{d} \theta 0.00042$, and d_{4}^{20} 0.820 (lit. ${ }^{14} 0.8134$), $d_{4}^{25} 0.815$ (lit. ${ }^{14} 0.819$), both extrapolated.

θ°	29.4	51.2	$64 \cdot 8$	79.9	$94 \cdot 8$	$105 \cdot 0$		
$d_{4} \theta$	$0 \cdot 8107$	0.7901	$0 \cdot 7778$	$0 \cdot 7598$	$0 \cdot 7461$	0.7346		
θ°	18.2	$30 \cdot 8$	47.5	59.4	76.5	86.5	$99 \cdot 2$	106.8
η	53.58	$30 \cdot 66$	16.76	11.91	7.87	6.36	$5 \cdot 016$	$4 \cdot 364$

Heptan-2-ol (VII). This was similarly prepared from pentyl bromide and acetaldehyde. Fractionation and discarding of much low-boiling material gave only a low yield of alcohol of sufficient quality for our work. It distilled over a 0.7° range and had $n_{D}{ }^{20} 1.4210$ (International Critical Tables gives 1.4213), $\mathrm{d} n / \mathrm{d} \theta 0.00039 ; d_{4}^{20} 0.820$ and $d_{4}^{30} 0.812$ [both extrapolated and both agreeing well with ${ }^{4}$ literature values (International Critical Tables and ref. 14 give 0.819 and 0.810 , respectively)].

θ°	$30 \cdot 1$	$48 \cdot 0$	$59 \cdot 2$	$74 \cdot 8$	89.3	103.6	$120 \cdot 0$	$135 \cdot 3$	148.3
$d_{4}{ }^{\text {a }}$	$0 \cdot 8118$	0.7978	0.7880	0.7748	0.7615	0.7485	$0 \cdot 7322$	0.7171	0.7035
9°	$30 \cdot 0$	$45 \cdot 9$	$60 \cdot 1$	$75 \cdot 3$	$92 \cdot 3$	103.7	118.7	135.1	$150 \cdot 2$
η	$33 \cdot 21$	$20 \cdot 21$	$13 \cdot 76$	$9 \cdot 80$	$7 \cdot 02$	$5 \cdot 81$	$4 \cdot 60$	$3 \cdot 658$	3.047

Heptan-3-ol (VIII). Fractionation of material (Kodak Ltd., Kirkby Trading Estate, Liverpool) gave a product, b. p. range $0 \cdot 1^{\circ}, n_{\mathrm{D}}{ }^{15} 1.4238, \mathrm{~d} n / \mathrm{d} \theta 0.00040$.

$\theta^{\circ} \ldots \ldots \ldots$	$33 \cdot 8$	$43 \cdot 4$	$62 \cdot 8$	$80 \cdot 4$	$92 \cdot 6$	$105 \cdot 5$	$132 \cdot 4$	$143 \cdot 4$
$d_{4} \theta \ldots \ldots$	$0 \cdot 810$	$0 \cdot 8021$	0.7858	$0 \cdot 7674$	0.7583	0.7459	0.7166	0.7080
$\theta^{\circ} \ldots \ldots \ldots$	$38 \cdot 4$	$53 \cdot 9$	$73 \cdot 5$	$86 \cdot 5$	$98 \cdot 4$	$117 \cdot 1$	$131 \cdot 3$	$145 \cdot 1$
$\eta \ldots \ldots \ldots$	$29 \cdot 86$	$16 \cdot 88$	$10 \cdot 24$	$7 \cdot 60$	$6 \cdot 00$	$4 \cdot 404$	3.601	$3 \cdot 026$

[^5]
1994 Viscosity and Molecular Association. Part IV.

Heptan-4-ol (IX). This was prepared by Grignard reaction between propyl bromide and butyraldehyde and had b. p. range $0.4^{\circ}, d_{4}^{20} 0.820$ (extrapolated), $n_{\mathrm{D}}{ }^{20} 1.4199$ (International Critical Tables give $d_{4}^{20} 0.820, n_{\mathrm{D}}{ }^{20} 1.421$ and b. p. $1 \cdot 2^{\circ}$ higher than ours), $\mathrm{d} n / \mathrm{d} \theta 0.00042$.

2-Methylhexan-2-ol (X). Similarly prepared from butyl bromide and acetone, this alcohol had b. p. range $0.2^{\circ}, d_{4}^{20} 0.815$ (extrapolated), $n_{\mathrm{D}}{ }^{15} 1.4214, n_{\mathrm{D}}{ }^{20} 1.4193$, $\mathrm{d} n / \mathrm{d} \theta 0.00041$ (International Critical Tables give $d_{4}^{20} 0 \cdot 816, n_{\mathrm{D}}{ }^{20} 1 \cdot 4159$). The refractive index was remeasured on completion of the physical measurements to check lack of dehydration. It was unchanged.

$\theta^{\circ} \ldots \ldots \ldots$	$29 \cdot 9$	$38 \cdot 8$	$54 \cdot 6$	$75 \cdot 9$	91.6	107.4	$115 \cdot 1$	
$d_{4} \theta \ldots \ldots$	0.8064	0.7980	0.7852	0.7659	0.7498	0.7342	0.7260	
$\theta^{\circ} \ldots \ldots \ldots$	$32 \cdot 5$	$45 \cdot 2$	60.2	75.8	90.8	110.6	122.3	133.9
$\eta \ldots \ldots \ldots$	30.16	19.74	12.83	8.82	6.43	4.48	3.84	3.321

2,4-Dimethylpentan-3-ol (XI). Fractionation of B.D.H. material gave a sample, b. p. range $0.1^{\circ}, d_{4}^{20} 0.829$ (extrapolated), $n_{\nu}{ }^{20} 1.4248 \longrightarrow 1.4250, \mathrm{~d} n / \mathrm{d} \theta 0.00042$ (International Critical Tables give $\left.d_{4}^{20} 0 \cdot 829, n_{D}{ }^{20} 1 \cdot 4226\right)$.

θ°	$33 \cdot 8$	$43 \cdot 4$	62.7	$80 \cdot 4$	$92 \cdot 6$	105.5	121.6		
$d_{4}{ }^{\theta}$	$0 \cdot 8153$	$0 \cdot 8081$	$0 \cdot 7893$	$0 \cdot 7716$	$0 \cdot 7587$	$0 \cdot 7455$	0.7292		
θ°	31.0	$48 \cdot 4$	$64 \cdot 6$	79.7	$95 \cdot 2$	109.5	119.3	124.6	$132 \cdot 8$
η	34-68	16.27	$9 \cdot 62$	$6 \cdot 70$	$5 \cdot 08$	$4 \cdot 00$	3.55	$3 \cdot 34$	3.026

Heptan-1-ol (XII). Fractionation of B.D.H. material (200 c.c.) gave a sample (30 c.c.) of constant b. p., $n_{\mathrm{D}}{ }^{25} 1.4228$. Taking $\mathrm{d} n / \mathrm{d} \theta 0.0004$, we have $n_{\mathrm{D}}{ }^{20} 1.4248$ (cf. 1.4252 , ref. 8) and

$n_{\mathrm{D}}{ }^{22.4} 1.4238$ (cf. 1.4233 , International Critical Tables). The density at 22° was taken from the International Critical Tables, and the coefficients of expansion from ref. 15.

Octan-l-ol (XIII). A sample (30 c.c.), obtained by fractionation of B.D.H. material (100 g .),
 $\mathrm{d} n / \mathrm{d} \theta 0.00039$. There is also satisfactory agreement (mean deviation $0.4^{\circ} \mathrm{C}$) with the boiling points at four different pressures from 20 mm . to 760 mm ., recorded by Dorough,

$\theta^{\circ} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$120 \cdot 8$	$130 \cdot 8$	$138 \cdot 5$	$151 \cdot 8$	$165 \cdot 8$	$176 \cdot 5$	$187 \cdot 1$	
ν	$\ldots \ldots \ldots \ldots \ldots \ldots$.	9.88	8.52	$7 \cdot 69$	6.54	5.5565	$5 \cdot 041$	$4 \cdot 483$

Glass, Gresham, Malone, and Reid. ${ }^{16}$ The density at 0° was taken from Timmermans ${ }^{13}$ and the coefficients of expansion from Castell-Evans. ${ }^{15}$

5-Methyl-2-t-butylphenol (XIV). Material (Kodak Ltd.; 260 c.c.) was washed with warm 15% sodium hydroxide solution (500 c.c.), and the residue (~ 190 c.c.) completely dissolved in aqueous sodium hydroxide (40 g . in $160 \mathrm{c} . \mathrm{c}$. of water). Water ($\sim 20 \mathrm{c} . \mathrm{c}$.) was then gradually added until phenol (~ 40 c.c.) was regenerated. The remaining solution was diluted further, acidified with concentrated hydrochloric acid, and again treated with dilute sodium hydroxide until just alkaline. (According to Stevens, ${ }^{17}$ the presence of acid in the product causes dealkylation during distillation.) The product was washed free from alkali, dissolved in light petroleum (40 c.c.), dried over " Drierite," and fractionated at 30 mm . pressure to give product (50 c.c.), b. p. 138.9°, m. p. (corr.; cooling-curve method) $21.0^{\circ}, n_{\mathrm{D}}{ }^{20} 1.5188$, $\mathrm{d} n / \mathrm{d} \theta\left(20-40^{\circ}\right.$) 0.00044 .

Densities were measured at two temperatures only, $d_{4}^{121.0} 0.8860$ and $d_{4}^{1590} 0.8529$. The values of $\sqrt{ } d$ at other temperatures needed to evaluate A, D, and d were calculated by assuming that

[^6]$\checkmark d$ is a linear function of temperature; the error thus introduced is negligible since the \% variation in viscosity is very much greater than the corresponding variation in $\sqrt{ } d$.

2,6-Di-t-butylphenol (XV). Material (250 g. ; Kodak Ltd.) was agitated with 40% sodium hydroxide solution (2×100 c.c.), and the residue was washed with warm water. It was then dissolved in light petroleum (80 c.c.), dried, and fractionated at 30 mm . The fraction of constant b. p. 145.5° was taken as pure material. This had $n_{\mathrm{D}}{ }^{35} 1 \cdot 5022, \mathrm{~d} n / \mathrm{d} \theta\left(35-40^{\circ}\right)$ $0 \cdot 00044$, m. p. (corr., cooling curve method) 37.3° (Kolka, Napolitano, and Ecke ${ }^{18}$ give m. p.

36.5°). Densities were measured at two temperatures only; $d_{4}^{121.0} 0.8626$ and $d_{4}^{159 \cdot 0} 0.8291$; values at other temperatures were calculated as before.

Department of Chemistry and Chemical Engineering,
Glamorgan College of Technology, Treforest, Glam. [Reccived, fuly 24th, 1961.]
${ }_{18}$ Kolka, Napolitano and Ecke, J. Org. Chem., 1956, 21, 712.

[^0]: * Parts I—III, $J ., 1948,1345,1349$; 1960, 4906.

[^1]: \dagger Mean deviation (Part III, eqn. 13), in the approximate range from 10 mm. to b . p.
 \propto The vapour pressures below 140 mm . appear to be seriously in error; the value of B_{100} quoted

[^2]: 1 Thomas, J., 1947, 822.
 ${ }^{2}$ Klyne, " Progress in Stereochemistry," Butterworths Scientific Publications, Vol. 1, 1954, 233.

[^3]: ${ }^{3}$ Coggeshall, J. Amer. Chem. Soc., 1947, 69, 1620.
 ${ }^{*}$ Sears and Kitchen, J. Amer. Chem. Soc., 1949, r1, 4110.
 ${ }^{5}$ Puttnam, J., 1960, 486.

[^4]: 6 Stanford and Gordy, J. Amer. Chem. Soc., 1940, 62, 1247.
 7 Kuhn, J. Amer. Chem. Soc., 1952, 74, 2492.
 ${ }^{*}$ Butler, Ramchandani, and Thomson, J., 1935, 280.

[^5]: 14 Weissberger, Proskauer, Riddich, and Toops, " Organic Solvents," Interscience Publishers, New York, 1955

[^6]: 15 "Physico-Chemical Tables," Griffin and Co. Ltd., London, 1902, Vol. 1.
 16 Dorough, Glass, Gresham, Malone, and Reid, J. Amer. Chem. Soc., 1941, 63, 3100.
 17 Stevens, Ind. Eng. Chem., 1943, 35, 655.

